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Theory Review: Optical Absorption

No electron-hole interactions

Quasi-electron: |ck + q)
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Quasi-hole: |vKk)
With electron-hole interactions
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Correlated electron-hole pair: |S)

Solutions of the Bethe-Salpeter equation (BSE)




Optical Absorption Spectrum and Excitons
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Bethe Salpeter Equation (BSE)

» Absorption spectrum with excitonic effects — diagonalize BSE Hamiltonian:

[H] (vek),(v'c'k")

[H] — [Ec — Ev] + [K] 4— dense ‘“kernel”

diagonal ~ potential term

~ kinetic term

Challenge: compute quasiparticle corrections and kernel

matrix elements on a very fine k-grid!




BerkeleyGW Interpolation Scheme

BerkeleyGWYV solution:
Interpolate QP energies and BSE kernel

» Step |: Expand fine WFNs in terms of coarse WFNs

kCO
Unkg = E :On,n’ Un'keo
nl

» Step 2: Interpolate QP energies and matrix elements

<UCIE|K|U’C’EI’C1> — Z C(l:‘;fl C:,l:f; Cz,lfégciﬁ%;‘l (ngnlkCO|K|n4ngl£)
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BerkeleyGWV Interpolation Scheme

» In practice: trading bands for k-points

Naive BerkeleyGW

kco kfi kco

@ Calculated

O Interpolated

» How to get a good interpolation?

Include a large number of bands from the coarse grid!




» BerkeleyGW also performs a
linear interpolation for QP
corrections.

» Linear interpolation +
expansion over bands:

Captures (nk)-dependent QP
correction and band crossing

Very smooth interpolation of
band structure

Robust scheme, and very few
parameters

» This is how inteqp.x works!

D. Qiu, F H. dajornada, S. G. Louie, PRL 111, 216805 (2013)
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BerkeleyGW Workflow

Goal: Diagonalize BSE Hamiltonian on a coarse grid
[H]g = [E. — Evlg + K]




BerkeleyGW Workflow

Step |: Calculate QP-corrected band structure on a coarse grid

{Ec}co, {Ev}co,

Step 2: Calculate BSE kernel on the same coarse grid

G [K] co

Step 3: Interpolate to a fine k-grid and build BSE Hamiltonian...
[H] co = [H]fi

... and diagonalize BSE Hamiltonian
evals [H]g = &,




|. Sigma

Step |: Calculate QP-corrected band structure on a coarse grid

{Ec}co, {Ev}co,

» Same procedure done in previous sessions.

» Recommended: eqp.dat
Calculate QP energies on all k-points from WFN_inner.

Use the script eqp.py to generate egp.dat file — no human intervention!

» Also possible: scissors operators
Run a Sigma calculation on only a few k-points from WFN_inner.

Fit linear energy-dependent scissors operators — only ok for isotropic
systems!




|. Sigma

Sample sigma.inp (assuming we are using eqp.dat)

screened coulomb cutoff <?>
bare _coulomb_cutoff <?>

number _bands <?>
band occupation <?>

band _index_min <?>
band _index_max <?>

screening_semiconductor
number_ kpoints <?>
begin kpoints
<put all k-points from WFN_INNER here>
end

Remember to

calculate Sigma on
more bands because
of the interpolation!

kCO

l{CO




|. Sigma — Workflow

-

sigma_hp.log
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2. Kernel

Step 2: Calculate BSE kernel on the same coarse grid

ke [K] CcoO
» Time consuming! . . N
Computes (n,n,.n;)? matrix K = >U< — W,
elements - - PN
bsexmat bsedmat
head, wing,
» Recommended: bod &
ody

Use same WFN_co as in Sigma (VWFN_inner)

» Also possible:

Use a different grid in WFN_co, only possible with scissors operators.




2. Kernel

Sample kernel.inp

number_val bands <?>
number_cond_bands <?>

Remember to
calculate Kernel on
more bands because

screened coulomb cutoff <?> : .
of the interpolation!

<?> symmetries coarse grid

screening <?> # of bands in Sigma

can’t be less than this
number!

You'll typically want to use symmetries
here, so put:
use_symmetries coarse_ grid




2. Kernel — Workflow

kernel.inp

S \
kernel.x _/
Sl / |

WFN _co




3. Absorption

Step 3: Interpolate to a fine k-grid and build BSE Hamiltonian...

[H]co = [H]g

... and diagonalize BSE Hamiltonian
evals [H]g = &,

» Absorption needs same coarse WFN_co from Kernel/Sigma

» Absorption also need two fine WFN files:
WEN: for conduction states

WFNaq: for valence states

» Good practice: use randomly-shifted k-grids

This maximized the number of transitions you are capturing.




3. Absorption

Sample absorption.inp

diagonalization

number_val bands coarse <?>
number cond bands_coarse <?>

number_val bands fine <?>
number cond bands fine <?>

coarse_grid points <?>

use_symmetries coarse grid
no_symmetries fine grid

no_symmetries shifted grid
screening_ semiconductor

use velocity
q_shift 0.0 0.0 0.001

gaussian_broadening
energy resolution 0.15

eqp_co_corrections

Same as used in kernel.

We interpolate to these
bands!

How many k-points in the
coarse grid after unfolding BZ?

Typical values.

Recommended!

Kwen + Qshire = Kwrng

Broaden each delta function.

Interpolate eqp_co.dat




3. Absorption — Workflow

absorption_noeh.dat

absorption_eh.dat

eqp_co.dat
eigenvectors.dat

.
__ d’mat_norm.dat
WEN_fi | WFNq fi

abso rption.x eigenvalues.dat
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Issues Unique to the BSE Code

I. Velocity operator
2. Number of converge knobs
3. Estimating the quality of the interpolation

4. Direct diagonalization vs. haydock

5. Analyzing exciton files




|. Velocity operator

£2(q,0) < ) [0I919)[%6[w — 5] (0191) = ) 4, (vkld|ck + q)
S

vck
» Because of non-local pseudopotential and QP corrections, the velocity
operator is not the same as the momentum!

p=i[H,# =p+i[V,7]

use velocity use_momentum

» Recommended option! » Not recommended!
» Needs WFN_fiand WFNq_fi. » Needs only WFN.
> Specify g-shift: Kywen + Qsnire = Kweng » Specify polarization e of 7.

1§Ck(vk|e_iq"r|ck + q) (vK|D|ck + q) = (VK|p;|cK)




2. Number of Convergence Knobs

» There are 4 convergence parameters in a typical BSE calculation:

# of k-points in the fine grid E —

Attention! /
# of bands in the fine gr’id In kernel/absorption,

the number of cond/val  FE '74- -
# of k-points in the coarse grid bands refer to the / -
-~

number of occ/unocc

# of bands in the coarse grid states! k

» Uncontrolled approximations:
Restricted interpolation (problematic for w — 0 in metals)  Removedinv. I.1

Tamm-Dancoff approximation

Static screening




3. Quality of the Interpolation

» How to measure the quality of WFN expansion?

» If we include oo bandes:
kCO 2 S
Zn’ ‘Cn,n" _ 1

» Finite basis set — normalization is reported in files d?mat_norm.dat:

Norm of dvv matrices : Spins

0.987006
0.953488
0.892665
0.923182
» How to get a good interpolation? Before
renormalization
Include a large number of bands from the coarse grid! of coefficients.

Start from a fine enough grid




4. Diagonalization vs. Haydock

» We can get the absorption spectrum &, (w) by computing the
eigenvalues of [H]g

» Alternative approach: Haydock iterative scheme

Uses the fact that H is Hermitian and computes directly and integrated
quantity of H

No need to diagonalize matrix!

Fast, and scales better with nhumber of processors

Drawback: no access to eigenvectors!

absorption.inp with full diagonalization absorption.inp with Haydock scheme

diagonalization haydock
number_iterations 500




5. Analyzing Excitons

» Optical spectrum &, (w), & (w):
absorption_noeh.dat: GW-RPA without local fields
absorption_eh.dat: GW-BSE with local fields

» Eigenvalues of the BSE equation (g:

eigenvalues.dat: useful to see if there are degeneracies, splitting, etc.

» Where the exciton is coming from:
summarize_eigenvectors.x
Need to set the flag write_eigenvalues in absorption.inp
Doesn’t work with Haydock!




Wrapping Up

» Interpolation: projection onto bands.

» Why we need | coarse WFN and 2 fine WFN:s.

» Which k-grid to use for each WFN.




Let’s Put the Donkey to VWork!

’
ﬂ@ BerkeleyGW

Predicting quasiparticle band structures since 1985.




5. Scissors Operators

» If QP corrections are isotropic and linear with energy, we can
approximate the corrections by scissors operators (not recommended)

» Workflow:

Calculate Sigma only on a few

I I T
0.8 - 'scissors.dat' X * X ﬂ?ﬁ ~

0.030*x + 0.2
0.040*x - 0.51 —

0.6

k-points
. 04
>
L
Plot: <
. —ll 0.2
Ecor = EQP —Eipavs Erpa w
2
g O
Fit two linear functions: one for 02
conduction and one for valence
states 04

0 5 10 15
E_LDA (eV)




5. Scissors Operators

» What changes:
Don’t create an eqp_co.dat file

Change absorption.inp

absorption.inp with eqp_co.dat absorption.inp with scissors operators

egp_co_corrections

» Where, for n = {v, c}:

Eqop = Eipa+ Ens + Endel * (Eppg — En0)




